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1. Introduction

The black hole attractor mechanism has been an active subject over the past few years in

string theory. This is originated from the observation that there is a connection between the

partition function of four-dimensional BPS black holes and partition function of topological

strings [1]. This mechanism states that in the extremal black hole backgrounds the moduli

scalar fields at horizon are determined by the charge of black hole and are independent of

their asymptotic values. One may study the attractor mechanism by finding the effective

potential for the moduli fields and examining the behavior of the effective potential at

its extremum. This extremum should be a local minimum for extremal black holes. The

entropy of black hole is then given by the value of the effective potential at its minimum.

Using this, the entropy of some extremal black holes has been calculated in [2].

Recently, it has been proposed by A. Sen that the entropy of a specific class of ex-

tremal black holes in higher derivative gravity can be calculated using the entropy function

formalism [4]. According to this formalism, the entropy function for the black holes that

their near horizon is AdS2 × SD−2 is defined by integrating the Lagrangian density over

SD−2 for a general AdS2 ×SD−2 background characterized by the size of AdS2 and SD−2,

and taking the Legendre transform of the resulting function with respect to the parame-

ters labeling the electric fields. The result is a function of moduli scalar fields as well as

the sizes of AdS2 and SD−2. The values of moduli fields and the sizes are determined by

extremizing the entropy function with respect to the moduli fields and the sizes. Moreover,

the entropy is given by the value of the entropy function at the extremum.1 Using this

method the entropy of some extremal black holes have been found in [4 – 6].

1It is assumed that in the presence of higher derivative terms there is a solution whose near horizon

geometry is AdS2×SD−2. In the cases that the higher derivative corrections modify the solution such that

the near horizon is not AdS2 × SD−2 anymore, one cannot use the entropy function formalism. In those

cases one may use the Wald formula [3] to calculated the entropy directly.
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The above discussion does not indicate that the entropy function should have local

minimum at the near horizon. In fact, it has been shown in [7] that the entropy function

has a saddle point at the near horizon of extremal black holes. One may then conclude

that the entropy function formalism should not be something specific for the extremal

black holes. Indeed, it has been shown in [8, 7] that the entropy function formalism works

for some non-extremal black hole/branes at the supergravity level. It has been speculated

in [7] that the entropy function formalism works for the non-extremal black holes/branes

whose near horizons are some extension of AdS space, e.g., Schwarzschild black hole in

AdS.

The non-extremal black branes that have been studied in [7] are D3, M2 and M5-

branes whose near horizon geometries are Schwarzschild black hole in AdSp+2 where p = 3, 2

and 5, respectively. When higher derivative corrections are included, however, the near

horizon geometry is not the Schwarzschild black hole in AdSp+2 anymore. Consequently,

the entropy function formalism does not work for these cases when one considers the

higher derivative terms. In this paper, we would like to study the non-extremal black

hole/brane solutions that the higher derivative terms respect the symmetry of the tree

level solutions. Consider the non-extremal D1D5 and D2D6NS5-branes. The near horizon

(throat approximation) of their tree level geometries are the Schwarzschild black hole in

AdS3. Moreover, in these cases, the higher derivative terms of the effective action respect

the symmetry of the supergravity solution. In fact, the Schwarzschild black hole in AdS3 is

the BTZ black hole [9] in which the inner horizon ρ− = 0. On the other hand, it is known

that the BTZ black hole is an exact solution of the string theory [10]. So one expects that

the entropy function formalism works for the non-extremal D1D5 and D2D6NS5-branes

even in the presence of the higher derivative terms.

An outline of the paper is as follows. In section 2, we review the non-extremal D1D5

and D2D6NS5 solutions of the effective action of type II string theory. In sections 3,

using the entropy function formalism we derive the Bekenstein-Hawking entropy of D1D5-

branes in terms of the temperature of black branes. We show that the entropy is given

by the entropy function at its saddle point. In subsection 3.1 we show that the higher

derivative terms respect the symmetries of the solution at the tree level and the entropy

function formalism works in the presence of the higher derivative terms. Using this we

find the entropy as the saddle point of the entropy function. As a double check, we also

calculate the entropy using the Wald formula directly and find exact agreement with the

result from the entropy function formalism. In section 4, we repeat the calculations for

D2D6NS5-branes. We shall show that, in both cases, the higher derivative terms do

not modify the tree level temperature, however, the entropy decreases with respect to the

Bekenstein-Hawking entropy.

2. Review of the non-extremal solutions

In this section we review the non-extremal D1D5 and D2D6NS5-branes solutions of the

effective action of type II string theory. The two-derivatives effective action in the string
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frame is given by

S =
1

16πG10

∫

d10x
√−g

{

e−2φ

(

R + 4(∂φ)2 − 1

12
H2

(3)

)

− 1

2

∑ 1

n!
F 2

(n) + · · ·
}

, (2.1)

where φ is the dilaton, H(3) is NS-NS 3-form field strength, and F(n) is the electric R-R

n-form field strength where n = 1, 3, 5 for IIB and n = 2, 4 for type IIA theory. In above

equation, dots represent fermionic terms in which we are not interested. The effective

action includes a Chern-Simons term which is zero for the D1D5 and D2D6NS5 solutions.

Moreover, for these solutions F(n) = dC(n−1). The 5-form field strength tensor is self-dual,

hence, it is not described by the above simple action. It is sufficient to adopt the above

action for deriving the equations of motion, and impose the self-duality by hand.

The non-extremal D1D5-branes solution of the IIB effective action when D1-branes

are along the compact (z) direction (S1) and D5-branes along the compact (z, x1, x2, x3, x4)

directions (S1 × T 4) is given by the following, (see e.g. [11]):

ds2 = (f1f5)
− 1

2

(

− fdt2 + dz2

)

+ (f1f5)
1

2

(

dr2

f
+ r2(dΩ3)

2

)

+

(

f1

f5

)
1

2
4

∑

i=1

dx2
i ,

e−2φ =
f5

f1
, Ctz =

(

1

f1
− 1

)

, Ctzx1···x4
=

(

1

f5
− 1

)

, (2.2)

where

f1 = 1 +
Q1

r2
, f5 = 1 +

Q5

r2
, f = 1 − r2

0

r2
. (2.3)

The above solution is the D1D5P solution [11, 14] in which the amount of left and right

moving momenta, propagating in the compact direction z, is chosen to be equal, i.e., σ = 0

in the notation [14].

For r0 = 0 we obtain the extremal solution, depending on the two parameters Q1

and Q5 which are related to the number of D-branes. For r0 6= 0 a horizon develops at

r = r0. The near horizon geometry which is described by a throat, can be found by using

the throat approximation where r ≪ Q1 and r ≪ Q5. In these limits the non-extremal

solution becomes

ds2 =
r2

√
Q1Q5

{

−
(

1− r2
0

r2

)

dt2+dz2

}

+

√
Q1Q5

r2

(

1− r2
0

r2

)−1

dr2

+
√

Q1Q5(dΩ3)
2+

√

Q1

Q5

4
∑

i=1

dx2
i ,

e−2φ =
Q5

Q1
, Frtz = 2

r

Q1
, Frtzx1···x4

= 2
r

Q5
. (2.4)

The geometry is the product of S3 × T 4 with the Schwarzschild black hole in AdS3.

The non-extremal D2D6NS5-branes solution of the IIA effective action when D2-

branes are along the compact (z, x1) directions (S1 × S′1), D6-branes along the com-

pact (z, x1, x2, x3, x4, x5) directions (S1 × S′1 × T 4) and NS5-branes along the compact

– 3 –
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(z, x2, x3, x4, x5) directions (S1 × T 4) is given by the following (see e.g. [13]):

ds2 = (f2f6)
− 1

2

(

− fdt2 + dz2

)

+ f5(f2f6)
1

2

(

dr2

f
+ r2(dΩ2)

2

)

+f5(f2f6)
− 1

2 dx2
1 +

(

f2

f6

)
1

2
5

∑

i=2

dx2
i ,

e−2φ = f−1
5 f

3

2

6 f
− 1

2

2 , Ctzx1
= coth α2

(

1

f2
− 1

)

+ tanh α2 ,

Hx1ij = ǫijk∂kf
′
5 , (dA)ij = ǫijk∂kf

′
6 , i = 6, 7, 8 , (2.5)

where

f = 1 − r0

r
, fn = 1 +

r0 sinh2 αn

r
, f ′

n = 1 +
r0 sinhαn cosh αn

r
, n = 2, 5, 6 . (2.6)

The above solution is the D2D6NS5P solution [13, 14] in which the amount of left and

right moving momenta, propagating in the compact direction z, is chosen to be equal, i.e.,

αp = 0 in the notation [14].

For r0 → 0 one obtains the extremal solution by sending αn → ∞ such that

r0 sinh2 αn ≡ Qn is kept fixed. The extremal solution then depends on the three pa-

rameters Q2, Q5 and Q6 which are related to the number of D-branes. For r0 6= 0 a

horizon develops at r = r0. The near horizon geometry which is described by a throat can

be found by using the throat approximation where r ≪ Qn and Qn ≡ r0 sinh2 αn. In this

limit cosh αn ∼ sinh αn and the non-extremal solution becomes

ds2 =
ρ2

4Q5
√

Q2Q6

{

−
(

1 − ρ2
0

ρ2

)

dτ2 + dy2

}

+
4Q5

√
Q2Q6

ρ2

(

1 − ρ2
0

ρ2

)−1

dρ2

+Q5

√

Q2Q6(dΩ2)
2 +

Q5√
Q2Q6

dx2
1 +

√

Q2

Q6

5
∑

i=2

dx2
i ,

e−2φ =
Q

3

2

6

Q5
√

Q2
, Fρτyx1

=
ρ

2Q5Q2
, Hx1θφ = −Q5 sin θ, (dA)θφ = −Q6 sin θ , (2.7)

where we have made also the coordinate transformations τ = 2
√

Q5t, z = 2
√

Q5y, r = ρ2.

The above geometry is now the product of S2 ×S′1×T 4 with the Schwarzschild black hole

in AdS3.

3. Entropy function for non-extremal D1D5-branes

Following [4], in order to apply the entropy function formalism to the non-extremal D1D5-

branes one should deform the near horizon geometry (2.4) to the most general form which

– 4 –
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is the product of the AdS-Schwarzchild and S3 × T 4 space, that is

ds2
10 = v1

[

r2

√
Q1Q5

{

−
(

1 − r2
0

r2

)

dt2 + dz2

}

+

√
Q1Q5

r2

(

1 − r2
0

r2

)−1

dr2

]

+v2

[

√

Q1Q5(dΩ3)
2 +

√

Q1

Q5

4
∑

i=1

dx2
i

]

,

e−2φ =
Q5

Q1
u , Frtz =

2r

Q1

v
3

2

1

v
7

2

2

≡ e1 , Frtzx1···x4
=

2r

Q5
v

3

2

1 v
1

2

2 ≡ e2 , (3.1)

where v1, v2, u are supposed to be constants, otherwise the above geometry is not product

space. The electric field strengths are deformed such that the electric charges are remaining

fixed. The function f is defined to be the integral of the Lagrangian density over the horizon

H = S1 × S3 × T 4. The result of inserting the background of (3.1) into f is

f(v1, v2, u, e1, e2, r) ≡ 1

16πG10

∫

dxH√−gL

=
V1V3V4r

16πG10
Q

3/2
1 Q

−1/2
5 v

3/2
1 v

7/2
2

×





6uQ
1

2

5 (v1 − v2)

Q
3

2

1 v1v2

+
Q

1

2

1 Q
1

2

5

2v3
1r2

e2
1 +

Q
5

2

5

2Q
3

2

1 v3
1v

4
2r

2
e2
2



 , (3.2)

where V1 is the volume of S1, V3 is the volume of the 3-sphere with radius one, and V4 is

the T 4 volume. The electric charges are carried by the branes and are given by

q1 =
∂f

∂e1
=

V1V3V4Q
2
1v

7

2

2

16πG10v
3

2

1 r
e1 , q2 =

∂f

∂e2
=

V1V3V4Q
2
5

16πG10v
3

2

1 v
1

2

2 r
e2 . (3.3)

Note that the electric charges are independent of the scales v1 and v2 as expected, i.e.,

q1 =
V1V3V4

8πG10
Q1 , q2 =

V1V3V4

8πG10
Q5 . (3.4)

Following [4], for AdS2 space, one defins the entropy function as the Legendre transform of

f with respect to the electric fields e1 and e2. Extending that definition to our case which

is AdS3 space, we define the entropy function by taking the Legendre transform of f with

respect to the electric fields e1 and e2, and dividing the result by r, that is2

F (v1, v2, u) ≡ 1

r

(

e1
∂f

∂e1
+ e2

∂f

∂e2
− f

)

=
V1V3V4

16πG10
v
3/2
1 v

7/2
2

(

6u(v2 − v1)

v1v2
+

2

v7
2

+
2

v3
2

)

, (3.5)

2For AdS2+p space, one should divide the Legendre transform of f by rp to define the entropy function

in AdS2+p space.

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
0
3
6

where we have substituted the values of e1 and e2 from (3.1). Note that we have already

assumed that v1, v2 and u are independent of r, that is, v̇1, v̇2 and u̇ are not appeared

in the Lagrangian. Hence, diving the Legendre transform of f by r does not change the

equations of motion.3 Solving the equations of motion

∂F

∂vi
= 0 , i = 1, 2 ;

∂F

∂u
= 0 , (3.6)

one finds the following solution

v1 = 1 , v2 = 1 , u = 1. (3.7)

This confirms that (2.4) is a solution of the type IIB supergravity action.

Let us now consider the behavior of the entropy function around the above critical

point. To this end, consider the following matrix

Mij = ∂i∂jF (v1, v2, u) . (3.8)

Ignoring the overall factor, the eigenvalues of this matrix are (68.10,−10.87, 0.78). This

shows that the above critical point is a saddle point of the entropy function. It is a general

property of the entropy function for both extremal and non-extremal cases [7].

Let us now return to the entropy associated with this solution. It is straightforward

to find the entropy from the Wald formula [3]

SBH = − 8π

16πG10

∫

dxH
√

gH
∂L

∂Rtrtr
gttgrr . (3.9)

For this background we have Rtrtr = 1
v1

√
Q1Q5

gttgrr and
√−g = v1

√

gH . These simplify

the entropy relation to

SBH = −8π
√

Q1Q5

16πG10

∫

dxH√−g
∂L

∂Rtrtr
Rtrtr = −2π

√

Q1Q5
∂fλ

∂λ

∣

∣

∣

∣

λ=1

, (3.10)

where fλ is an expression similar to f except that each Rtrtr Riemann tensor component

is scaled by a factor of λ.

To find ∂fλ

∂λ |λ=1 using the prescription given in [4] and [5], we note that in addition to

Rtrtr, the Riemann tensor components Rtztz and Rrzrz are proportional to v1, i.e.,

Rtrtr = − v1√
Q1Q5

, Rrzrz =
v1r

2

√
Q1Q5(r2 − r2

0)
, Rtztz = −v1r

2(r2 − r2
0)

(Q1Q5)
3

2

. (3.11)

Hence, one should rescale them too. We use the following scaling for these components

Rtztz → λ1Rtztz , Rrzrz → λ2Rrzrz . (3.12)

3An alternative way to deal with the AdS2+p space is to dimensionally reduce it to AdS2 space and then

use the entropy function formalism of the AdS2 space [15].
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Now, fλ(v1, v2, u, e1, e2) must be of the form v
3

2

1 g(v2, λv1, λ1v1, λ2v1, e1v
− 3

2

1 , e2v
− 3

2

1 ) for some

function g. Then one can show that the following relation holds for fλ and its derivatives

with respect to scales, λi, e1, e2 and v1:

λ
∂fλ

∂λ
+ λ1

∂fλ

∂λ1
+ λ2

∂fλ

∂λ2
+

3

2
e1

∂fλ

∂e1
+

3

2
e2

∂fλ

∂e2
+ v1

∂fλ

∂v1
− 3

2
fλ = 0 . (3.13)

In addition, there is a relation between the rescaled Riemann tensor components at the

supergravity level, which can be found by using (3.11)

∂fλ

∂λ1

∣

∣

∣

∣

λ1=1

+
∂fλ

∂λ2

∣

∣

∣

∣

λ2=1

= 2
∂fλ

∂λ

∣

∣

∣

∣

λ=1

. (3.14)

Replacing the above relation into (3.13) and using the equations of motion, one finds that
∂fλ

∂λ |λ=1 = − r
2F . It is easy to see that the entropy is proportional to the entropy function

up to a constant coefficient, i.e.,

SBH = π
√

Q1Q2r0F =
V1V3V4r0

√
Q1Q5

4G10
, (3.15)

This is the Bekenstein-Hawking entropy. One may write the entropy in terms of the

temperature of black brane. The relation between r0 and temperature can be read from

the metric. The surface gravity is given by

κ = 2πT =
√

grr
d

dr

√−gtt

∣

∣

∣

∣

H

(3.16)

which in our case we find r0 = 2π
√

Q1Q5T . Note that the constant v1 is canceled in the

above surface gravity. This causes that the higher derivative terms which modifies v1 have

no effect on the temperature. The entropy in terms of temperature becomes

SBH = 2πN1N5V1T , (3.17)

where we have used the relations V3 = 2π2, V4Q1 = 16π4α′3gsN1, Q5 = α′gsN5, and

16πG10 = (2π)7α′4g2
s where N1 is the number of D1-branes and N5 is the number of D5-

branes [5]. Alternatively, one may write the entropy in terms of the number of left moving

or right moving momenta. Note that for our case NR = NL. The relation between r0 and

NR is given as

NR =
r2
0(V1/2π)2V4/(2π)4

4g2
sα

′4

where we have set σ = 0 in the relations for NR and NL in [14]. In terms of NR, the

entropy (3.15) becomes

SBH = 4π
√

N1N5NR

= 2π
√

N1N5

(

√

NL +
√

NR

)

(3.18)
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Note that for two charges extremal black hole, r0 = 0, i.e., NR = NL = 0, the entropy

function is exactly the same as the non-extremal case but the value of the entropy is zero.

We have seen that the entropy function works despite the fact that the horizon is

not attractive. To see more explicitly that the horizon here is not attractive, we use

the intuitional explanation for attractor mechanism given in [12]. According to this, the

physical distance from an arbitrary point to the attractive horizon is infinite. The proper

distance of an arbitrary point from the horizon in our case is

ρ =

∫ r

r0

(Q1Q5)
1/4

r

(

1 − r2
0

r2

)− 1

2

dr = (Q1Q5)
1/4 log

[

r

r0
+

√

r2

r2
0

− 1

]

, (3.19)

which is finite (infinite) for the non-extremal (extremal) case.

3.1 Higher derivative terms

In the previous sections we have seen that the entropy function formalism works at two

derivatives level. It will be interesting to consider stringy effects and take a look at the

entropy function mechanism again. To this end, we consider the higher derivative correc-

tions coming from string theory. To next leading order the Lagrangian of type II theory is

given by [17]

S =
1

16πG10

∫

d10x
√−g

{

Ltree + e−2φ (γW )

}

, (3.20)

where γ = 1
8ζ(3)(α′)3 and W can be written in terms of the Weyl tensors

W = ChmnkCpmnqCh
rspCq

rsk +
1

2
ChkmnCpqmnCh

rspCq
rsk . (3.21)

Following [4], we consider the general background consist of AdS-Schwarzchild times S3×T 4

space (3.1) in the presence of the higher derivative terms. As we shall see shortly, the higher

derivative terms respect the symmetry of the tree level solution, i.e., the coefficients v1 and

v2 remain constant. To see this we calculate the contribution of the above higher derivative

terms to the entropy function4

δF = − γQ5u

16πG10rQ1

∫

dxH√−gW

= −γu
V1V3V4

√
Q1Q5

16πG10
v

3

2

1 v
7

2

2

[

105(v4
2 − 4

7v3
1v2 + 18

35v2
1v

2
2 − 4

7v1v
3
2 + v4

1)

32Q2
1Q

2
5v

4
1v

4
2

]

. (3.22)

It is important to note that δF is independent of r. This is consistent with our assumption

that v1, v2 and u are constants. By variation of F + δF with respect to v1, v2 and u one

finds the equations of motion. Since these equations are valid only up to first order of γ,

we consider the following perturbative solutions:

v1 = 1 + γx , v2 = 1 + γy , u = 1 + γz . (3.23)

4Note that for AdS3 × S3 with identical radii, the Weyl tensor is zero as noted in [16]. However, this

tensor is non-vanishing for the space AdS3×S3
×T 4 in which we are interested in 10-dimensional space-time.
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One should replace them into the equations of motion, i.e.,

∂(F + δF )

∂u
= 0 −→ 6(y − x) =

9

2(Q1Q5)
3

2

,

∂(F + δF )

∂v1
= 0 −→ 28y + 4x + 8z =

3

(Q1Q5)
3

2

,

∂(F + δF )

∂v2
= 0 −→ −244y + 84x − 24z = − 27

(Q1Q5)
3

2

, (3.24)

these equations are consistent and give the following results:

v1 = 1 − γ
51

32(Q1Q5)
3

2

, v2 = 1 − γ
27

32(Q1Q5)
3

2

, u = 1 + γ
33

8(Q1Q5)
3

2

. (3.25)

It is interesting to note that the stringy effect decreases the closed string coupling at the

near horizon, i.e., φ = φ0 − 33γ/[16(Q1Q5)
3/2]. Similar behavior appears for the non-

extremal D3-branes [16].

Let us now return to the entropy associated with this solution. The entropy is given

by

SBH = π
√

Q1Q5r0(F + δF ) , (3.26)

where we have used the fact that all the steps toward writing the Wald formula (3.10)

for entropy in terms of the above entropy function remain unchanged. In particular the

relation (3.14) holds in the presence of the higher derivative terms. It turns out, in order

to find the entropy to linear order of γ, one does not need to know the values of x, y, and

z. To see this, note that if one replaces (3.23) into the first term above, one finds that

x, y, and z do not appear in this term linearly. The second term has an overall factor of γ,

hence to the linear order of γ, one has to replace v1 = v2 = u = 1 into it. The result is

SBH =
V1V3V4r0

√
Q1Q5

4G10

[

1 − γ
9

8(Q1Q5)3/2
+ O(γ2)

]

. (3.27)

As a double check, we calculate the entropy using the ward formula (3.10) directly, i.e.,

SBH = −2π
√

Q1Q5

(

∂fλ

∂λ

∣

∣

∣

∣

λ=1

+
∂fW

λ

∂λ

∣

∣

∣

∣

λ=1

)

, (3.28)

where the function fW is given by

fW =
γ

16πG10

∫

dxH√−ge−2φW . (3.29)

This second term is proportional to γ, so to the first order of γ one has to replace the

Schwarzschild AdS solution (2.4) in ∂fW
λ /∂λ which gives

∂fW
λ

∂λ

∣

∣

∣

∣

λ=1

= γ
V1V3V4r

16πG10

[

3

(Q1Q5)3/2

]

. (3.30)
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For the first term, on the other hand, one has to replace (3.23) which gives

∂fλ

∂λ

∣

∣

∣

∣

λ=1

=
V1V3V4r

16πG10

[

−2 − γ
7y + x + 2z

(Q1Q5)3/2

]

. (3.31)

Now inserting the solution (3.25) for x, y and z into the above equation, one finds exactly

the result (3.27).

To write the entropy in terms of the temperature, we note that v1 appears as an overall

factor of AdS3 in the background (3.1), hence, the temperature (3.16) remains the same

as the tree level temperature, i.e., r0 = 2π
√

Q1Q5T . This is unlike the temperature of

non-extremal D3-branes that stringy effects increase the tree level temperature.

The entropy of D1D5-branes in terms of temperature or in terms of NR is

SBH = 2πN1N5V1T

[

1 − γ
9

8

(

(2π)3V4

16πG10N1N5

)3/2

+ O(γ2)

]

= 4π
√

N1N5NR

[

1 − γ
9

8

(

(2π)3V4

16πG10N1N5

)3/2

+ O(γ2)

]

. (3.32)

In the second line, we have used the fact that the higher derivative corrections do not

change the Hawking temperature which means the number of excitations for the left and

right moving momenta remain the same as the tree level result. Note that the leading α′

correction makes the entropy decreases.

4. Entropy function for non-extremal D2D6NS5-branes

Following [4], in order to apply the entropy function formalism to the non-extremal

D2D6NS5-branes one should deform the near horizon geometry (2.7) to the most gen-

eral form which is the product of the AdS-Schwarzchild and S′1 × S2 × T 4 space, that

is

ds2
10 = v1

[

ρ2

4Q5
√

Q2Q6

{

−
(

1 − ρ2
0

ρ2

)

dτ2 + dy2

}

+
4Q5

√
Q2Q6

ρ2

(

1 − ρ2
0

ρ2

)−1

dρ2

]

+v2

[

Q5

√

Q2Q6(dΩ2)
2 +

Q5√
Q2Q6

dx2
1 +

√

Q2

Q6

5
∑

i=2

dx2
i

]

,

Fρτyx1
=

ρ

2Q5Q2

v
3

2

1

v
5

2

2

≡ e1 , Hx1θφ = −Q5 sin θ , (dA)θφ = −Q6 sin θ ,

e−2φ =
Q

3

2

6

Q5
√

Q2
u , (4.1)

where v1, v2, u are supposed to be constants. The electric field strength is deformed such

that the corresponding electric charge remains fixed. Similarly, to have the fixed magnetic

charges, one does not need to deform the magnetic field strength. The function f is defined
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to be the integral of the Lagrangian density over the horizon H = S1 ×S′1 ×S2 ×T 4. The

result of inserting the background (4.1) into f is

f(v1, v2, , u, e1) ≡ 1

16πG10

∫

dxH√−gL

=
V1V

′
1V2V4ρ

32πG10
Q2Q5Q

−1
6 v

3/2
1 v

7/2
2

×
(

uQ6(4v1 − 3v2)

2Q2Q2
5v1v2

+
2Q2Q6

v3
1v2ρ2

e2
1 −

Q6

2v2
2Q

2
5Q2

− Q6u

2v3
2Q

2
5Q2

)

, (4.2)

where V1(V
′
1) is the volume of S1(S′1), V2 is the volume of the 2-sphere with radius one,

and V4 is the T 4 volume. The electric charge carried by the D2-brane is given by

q1 =
∂f

∂e1
=

V1V1V2V4Q
2
2Q5v

5

2

2

8πG10v
3

2

1 ρ
e1 . (4.3)

Note that the electric charge is independent of the scales v1, v2 as expected, i.e.,

q1 =
V1V1V2V4

16πG10
Q2 . (4.4)

Now we define the entropy function by taking the Legendre transform of f with respect to

the electric field e1, and dividing by ρ, that is

F (v1, v2, u) ≡ 1

ρ

(

e1
∂f

∂e1
− f

)

=
V1V1V2V4

32πG10Q5
v
3/2
1 v

7/2
2

(

u(3v2 − 4v1)

2v1v2
+

1

2v6
2

+
1

2v2
2

+
u

2v3
2

)

,

where we have substituted the value of e1. Solving the equations of motion

∂F

∂vi
= 0 , i = 1, 2 ;

∂F

∂u
= 0 , (4.5)

one finds the following solutions

v1 = 1 , v2 = 1 , u = 1 . (4.6)

This confirms that (2.7) is a solution of the type IIA supergravity action. To find the

behavior of the entropy function around the above critical point, consider again the ma-

trix (3.8). Ignoring the overall factor, the eigenvalues of this matrix are (12.44,−3.30, 0.37).

This shows again that the above critical point is a saddle point of the entropy function.

Let us now return to the entropy associated with this solution. The Wald formula [3]

is given by

SBH = − 8π

16πG10

∫

dxH
√

gH
∂L

∂Rτρτρ
gττgρρ . (4.7)
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For this background we have Rτρτρ = 1
4v1Q5

√
Q2Q6

gττgρρ and
√−g = v1

√

gH . These

simplify the entropy relation to

SBH = −32πQ5
√

Q2Q6

16πG10

∫

dxH√−g
∂L

∂Rτρτρ
Rτρτρ = −8πQ5

√

Q2Q6
∂fλ

∂λ

∣

∣

∣

∣

λ=1

, (4.8)

where fλ is an expression similar to f except that each Rτρτρ Riemann tensor component

is scaled by a factor of λ.

To find ∂fλ

∂λ |λ=1, we note that in addition to Rτρτρ, the Riemann tensor components

Rτyτy and Rρyρy are proportional to v1, i.e.,

Rτρτρ = − v1

4Q5(Q2Q6)
1

2

, Rρyρy =
v1ρ

2

4Q5(Q2Q6)
1

2 (ρ2 − ρ2
0)

, Rτyτy = − v1ρ
2(ρ2 − ρ2

0)

64Q3
5(Q2Q6)

3

2

.

(4.9)

Hence, one should also rescale these components. We use the following scaling

Rτyτy → λ1Rτyτy , Rρyρy → λ2Rρyρy . (4.10)

Now we see that fλ(v1, v2, u, e1) must be of the form v
3

2

1 g(v2, λv1, λ1v1, λ2v1, e1v
− 3

2

1 ) for some

function g. Then one can show that the following relation holds for fλ and its derivatives

with respect to scales, λi, e1 and v1

λ
∂fλ

∂λ
+ λ1

∂fλ

∂λ1
+ λ2

∂fλ

∂λ2
+

3

2
e1

∂fλ

∂e1
+ v1

∂fλ

∂v1
− 3

2
fλ = 0 . (4.11)

As in the D1D5 case, by using the equation (4.9) one finds the same relation as (3.14) be-

tween the rescaled Riemann tensor components at the supergravity level. Replacing (3.14)

into (4.11) and using the equations of motion, one finds again ∂fλ

∂λ |λ=1 = −ρ
2F . Hence, the

entropy is proportional to the entropy function up to a constant coefficient, i.e.,

SBH = 4πQ5

√

Q2Q6ρ0F =
V1V

′
1V2V4ρ0

√
Q2Q6

8G10
, (4.12)

This is the Bekenstein-Hawking entropy. One may write the entropy in terms of tempera-

ture. An alternative way to find temperature is to impose regularity of Euclidean metric

near the horizon. So consider the proper distance of an arbitrary point from the horizon,

i.e.,

r =

∫ ρ

ρ0

2(v1Q5)
1

2 (Q2Q6)
1

4

ρ

(

1 − ρ2
0

ρ2

)− 1

2

dρ = 2(v1Q5)
1

2 (Q2Q6)
1

4 log

[

ρ

ρ0
+

√

ρ2

ρ2
0

− 1

]

.

(4.13)

Near ρ0, one finds ρ2 = ρ2
0(1 + r2/4v1Q5

√
Q2Q6). So the metric (4.1) near ρ0 becomes

ds2 = − ρ2
0

16Q2
5Q2Q6

r2dτ2 + dr2 + · · · . (4.14)

The period of the Euclidean time, required by the regularity of metric is 1/T = β =

8πQ5
√

Q2Q6/ρ0. Note that here also the constant v1 does not appear in the above met-

ric, so the temperature is independent of the value of v1. The entropy in terms of the
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temperature is

SBH =
π

G10
V1V

′
1V2V4Q2Q5Q6T = 2πN2N5N6V1T , (4.15)

where in the last expression we have used

N2 =
1√

16πG10µ2

∫

S2×T 4

∗F(4) =
Q2V2V4

16πG10T2
,

N5 =
gs√

16πG10µ5

∫

S2×S′1

H(3) =
gsQ5V

′
1V2

16πG10T5
,

N6 =
1√

16πG10µ6

∫

S2

F(2) =
Q6V2

16πG10T6
, (4.16)

where µp =
√

16πG10Tp and Tp = 2π/((2πℓs)
p+1gs). Alternatively, one may write the

entropy in terms of the number of left moving or right moving momenta where in our case

NR = NL. The relation between ρ0 and NR is given as

NR =
ρ2
0(V1/4π

√
Q5)

2V4/(2π)4V ′
1/2π

2g2
sα

′4

where we have set αp = 0 in the relations for NR and NL in [14], and used the rescaling

z = 2
√

Q5y, r0 = ρ2
0. In terms of NR, the entropy (4.12) becomes

SBH = 4π
√

N2N6N5NR

= 2π
√

N2N6N5

(

√

NL +
√

NR

)

(4.17)

which is in the conventional form appearing in [14].

4.1 Higher derivative terms

We now consider the general background consist of AdS-Schwarzchild times S′1 × S2 × T 4

space (4.1) in the presence of the higher derivative terms. The higher derivative terms

respect the symmetry of the tree level solution, i.e., the coefficients v1 and v2 remain

constant. To see this we calculate the contribution of the above higher derivative terms to

the entropy function i.e.,

δF = − γQ
3

2

6 u

16πG10Q5Q
1

2

2 ρ

∫

dxH√−gW (4.18)

= −γuV1V
′
1V2V4(Q2Q6)

1

2 v
3

2

1 v
7

2

2

32πG10

[

35(− 3
28v3

1v2 + 81
2048v4

2 + 27
224v2

2v
2
1 − 27

896v3
2v1 + v4

1)

108v4
1v4

2(Q2Q6)2Q4
5

]

,

By variation of F + δF with respect to v1, v2 and u one finds the equations of motion.

Considering the perturbative solutions (3.23), one finds

∂(F + δF )

∂u
= 0 −→ y − 3x =

73315

110592(Q2Q
2
5Q6)

3

2

,

∂(F + δF )

∂v1
= 0 −→ 7y + x + 2z = − 7075

12288(Q2Q
2
5Q6)

3

2

,

∂(F + δF )

∂v2
= 0 −→ 41y − 21x + 2z = − 44395

110592(Q2Q
2
5Q6)

3

2

, (4.19)
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these equations are consistent, and give the following results

v1 = 1 − γ
247343

884736(Q2Q2
5Q6)

3

2

, v2 = 1 − γ
155509

884736(Q2Q2
5Q6)

3

2

,

u = 1 + γ
45917

98304(Q2Q
2
5Q6)

3

2

. (4.20)

Similar to the D1D5 case, the stringy effects decrease the closed string coupling at the

near horizon. Let us return to the entropy associated with this solution. The entropy is

given by

SBH = 4πQ5

√

Q2Q6ρ0(F + δF ) , (4.21)

where again we have used the fact that all the steps toward writing the Wald formula for

the entropy in terms of the entropy function above, remain unchanged. In this case also,

in order to find the entropy to linear order of γ, one does not need to know the solutions

for x, y and z. That is, if one replaces (3.23) into the tree level entropy function, i.e., the

first term above, one finds that x, y, and z do not appear in it linearly. The second term,

on the other hand, has an overall factor of γ, hence to linear order of γ, one has to replace

v1 = v2 = u = 1 into it. The result is

SBH =
V1V

′
1V2V4ρ0(Q2Q6)

1

2

8G10

[

1 − γ
73315

221184(Q2Q2
5Q6)

3

2

+ O(γ2)

]

, (4.22)

As a double check, we calculate the entropy using the ward formula (4.8) directly, i.e.,

SBH = −8πQ5

√

Q2Q6

(

∂fλ

∂λ

∣

∣

∣

∣

λ=1

+
∂fW

λ

∂λ

∣

∣

∣

∣

λ=1

)

. (4.23)

The second term is proportional to γ, so to the first order of γ one has to replace the

Schwarzschild AdS solution (2.7) in ∂fW
λ /∂λ which gives

∂fW
λ

∂λ

∣

∣

∣

∣

λ=1

= γ
V1V

′
1V2V4ρ

16πG10Q5

[

1205

110592(Q2Q2
5Q6)

3

2

]

. (4.24)

For the first term, one has to replace (3.23) which gives

∂fλ

∂λ

∣

∣

∣

∣

λ=1

=
V1V

′
1V2V4ρ

16πG10Q5

[

−1

4
− γ

7y + x + 2z

8(Q2Q2
5Q6)

3

2

]

. (4.25)

Now inserting the solutions for x, y and z into the above equation, one finds exactly the

result (4.22). The entropy (4.22) in terms of temperature is

SBH = 2πN2N5N6V1T

[

1 − γ
73315

221184(Q2Q
2
5Q6)3/2

+ O(γ2)

]

. (4.26)

This entropy, like the entropy of the D1D5-branes, is less than the Bekenstein-Hawking

entropy. This is unlike the entropy of the non-extremal D3-branes [16] which is SD3
BH =
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π2

2 N2V3T
3(1 + 15γ + O(γ2)), where the first term is the Bekenstein-Hawking entropy and

the second term which is the α′ correction, is positive.

The increase in the entropy for D3-branes is consistent with the fact that the

Bekenstein-Hawking entropy at strong ’t Hooft coupling is less than the entropy of N = 4

SYM theory at zero coupling by a factor of 3/4 [18]. On the other hand, the correction to

the entropy at weak coupling is negative [19] which is an indication of smooth interpolation

between the weak and strong coupling regimes. For D1D5-branes, our result indicates that

the correction to the entropy at strong coupling is negative. On the other hand, it is known

that the entropy at zero coupling is the same as the Bekenstein-Hawking entropy at strong

coupling [20]. This indicates that the correction to the entropy at weak coupling should

be non-vanishing too. Assuming the interpolating function between the strong and the

weak coupling regimes of the Higgs branch of the N = (4, 4) SYM at finite temperature in

1 + 1 dimensions does not cross the zeroth order entropy at any point in finite coupling,

one expects the correction to the entropy at weak coupling to be negative. It would be

interesting to perform this calculation.
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